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THE USE OF PRIME RESIDUES AS A BLOCK ERASURE CODE 
WITH LINEAR DECODING TIME 

 
ABSTRACT: 
 
It is well known that prime residues can be used as a forward error correction code. The 
Chinese remainder theorem can be used to reconstruct the original data in “almost” linear 
time. We show that when formulated as a block erasure code, prime residues can be 
decoded in exactly linear time. The only requirement is that some kind of packet 
sequence numbers accompanies the data. When formulated this way, prime residue 
encoding forms a non-systematic block erasure code that is asymptotically MDS 
(maximum distance separable) as the word size is increased. The uses for this code 
include digital fountain implementation, efficient payload distribution for digital 
watermarking, and more. 
 
INTRODUCTION: 
 
There has been considerable interest in the last few years on so-called “digital fountain” 
codes [1, 2]. Byers defines “digital fountain” as follows: 
 

“A digital fountain injects a stream of distinct encoding packets into the 
network, from which a receiver can reconstruct the source data. The key 
property of a digital fountain is that the source data can be reconstructed 
intact from any subset of the encoding packets equal in total length to the 
source data [2].” 

.  
There are many examples of codes that can be used to implement a digital fountain, 
including Reed-Solomon, Tornado and LT codes [1]. These codes require some small 
amount of information to be transmitted along with the data. This may include some 
initialization (channel establishment) information and must include some kind of 
sequential packet ID number. This is quite common on the internet since there is no 
native guarantee that packets will arrive in order. Some sequencing means must be used 
to put the packets into proper order before consumption. The knowledge of this number 
allows data encoded as prime residues to be decoded in linear time, since it can be used to 
identify the particular prime number that generated the residue. 
 
In a block-erasure model, we assume that packets are either received correctly or they are 
not received at all (or, equivalently, they may be received but are known to be corrupted). 
The goal then is to reconstruct the data from the minimum number of properly received 
packets that are arbitrarily selected from the received stream. 
 
 
PRIME RESIDUE CODING: 
 
We divide the data into (unsigned) words of w bits. We define the maximum word value 
as W-1 where wW 2= . We will break up the data stream into N-word groups. We divide 
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each group into K blocks where kK 2= . Each block will contain bit-reduced 
representations of all N words of the group. Note that the choice of K as an integral power 
of 2 is convenient but not necessary. We then choose K distinct prime numbers, 

110 ,...,, −Kppp  such that their product is greater than W. We will define M as the product 
of these prime numbers. We will call this condition ( WM >  with distinct primes) the 
recoverability condition.  For this initial exposition, we will have each prime number 
consist of exactly 1+kw  bits, though this is not necessary. For each input data word iD , 
we compute the K remainders after dividing iD  by each of the K prime numbers. We 
then transmit the K remainders, 110 ,...,, −iKii rrr  in place of the original data in the group. 
How these remainders are transmitted depends on the application. 
 
For an IP multicast application, we might send all the remainders associated with a 
specific prime number as a single data stream. This way, the prime number need only be 
transmitted once when the stream is established. Or the prime numbers might be implicit 
and trivially derivable from the sequence number by some kind of table lookup. 
 
Another use might be as a so-called data carousel [4], where a given packet of data is 
transmitted repeatedly through a noisy channel. A modern version of this occurs when we 
want to encode some kind of metadata into a video watermark [5]. The payload for a 
typical video watermark might be 30-40 bits. There might be a 40% chance of recovering 
the payload on any given frame. We can use prime numbers in the 30-40 bit range to 
reduce the metadata to a sequence of words that will fit in the watermark payload. We 
may then just wait until we have enough recovered payloads to reassemble the metadata 
from any combination of recovered payloads, as long as the prime numbers are distinct. 
 
DATA RECOVERY USING THE CHINESE REMAINDER THEOREM: 
 
We are given K remainders, 110 ,...,, −Krrr  for each original data word, produced by 
dividing the data word by K distinct primes 110 ,...,, −Kppp . At the time the 
communication channels are initiated and the receiving computer knows what the prime 
numbers are, the coefficients 110 ,...,, −Keee  can be computed so that the recovered data 
word will be simply 111100 ... −−+++ KK rerere  modulo M. As an implementation note, the 
coefficients se  may be positive or negative. Negative coefficients can be made positive if 
desired by adding an integral multiple of M. The resulting sum may be greater than M or 
it may be less than zero if negative coefficients are allowed. This will require a modulo M 
operation for each recovered word to restore it to the range of 0 to M-1. This adds a 
multiple-precision divide, multiply, and subtract to the necessary operations for each 
word. 
 
It remains only to compute the coefficients se . The Chinese remainder theorem teaches 
us how to accomplish this. Since sp  and spM /  are mutually prime, we can use the 
extended Euclid algorithm to find integers sr  and sq  such that 1)/( =+ ssss pMqpr . We 
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simply identify the coefficient )/( sss pMqe = . This completes the exposition (See [3] 
for the proof). The magnitude of se  will be between M and spM / . It cannot be greater in 
magnitude than M. The coefficients, se , need only be computed when one or more of the 
prime numbers is changed. 
 
The Chinese remainder theorem is also true when the sp  are just mutually prime. They 
do not have to be prime numbers as long as their greatest common divisor is one. In 
practice, it is prudent to always use prime numbers to avoid any possibility of 
accidentally choosing numbers that are not mutually prime. 
 
We should point out that prime residual encoding does not have to be implemented in the 
integers. It can be implemented in any ring, R, that has a sufficient number of 2-sided 
ideals, sI , that are pairwise coprime. We will use the field of integers for this paper with 
the understanding that it can be formulated in other number systems if desired. 
 
DATA RATE AND REDUNDANCY: 
 
We can add redundancy by simply choosing some number of additional primes and 
producing additional blocks of residuals from these primes. If we want to recover from 
the loss of up to, say, 3 blocks, we just choose 3 new primes and send 3 additional blocks 
of residuals. Any subset of K blocks of residuals from the K+3 blocks is sufficient to 
recover the original data as long as the product of those K primes is greater than W. Note 
that this means that the primes do not necessarily have to be the same size. They can be 
any collection of sizes as long as the recoverability condition is satisfied. We have 
considerable flexibility in choosing prime sizes and thus block sizes. 
 
Even more significant is that the amount of redundant data can be adjusted on the fly. 
That is, we can always generate a few more redundant blocks when necessary. Given a 
sufficient reserve of available prime numbers, redundant blocks can be generated as 
needed. 
 
Coding by prime residuals is not precisely MDS, since the prime numbers, and thus the 
residuals, are represented by 1+kw  bits. To be MDS, they would have to be precisely 

kw  bits. This difference can be made arbitrarily small by increasing w, the word size. 
For this reason, we can say that prime residue coding is asymptotically MDS. Note that if 
we include the inherent overhead of packet sequence numbers, we can conclude that no 
codes are precisely MDS. There is always some small overhead. 
 
The compute time grows linearly with N by construction. The reconstruction expression 
is evaluated exactly once for each data word. The compute load for each word will be 
proportional to the time required to calculate the reconstruction expression, 

111100 ... −−+++ KK rerere . Since this involves multiple-precision multiplication, the 
compute time will be roughly )( 2wO  per word. This places practical limits on w and thus 
on the ultimate spatial efficiency of prime residue encoding. Smaller word sizes are 
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favored because it is faster to calculate the reconstruction expression with smaller 
numbers. Larger word sizes are favored because the difference between 1+kw  and kw  
is less significant as kw  becomes larger. Note that below a certain word size that 
depends on the architecture of the CPU being used, the reconstruction expression is 
realizable without the use of multiple-precision arithmetic. 
 
Since the original data do not appear in the encoded blocks, prime residue encoding is 
seen to be a non-systematic code. This means that even if there are no block losses, some 
compute power is required to recover the data. In fact, the compute time to decode the 
data is constant, regardless of the number of block losses. 
 
APPLICATIONS: PEER-TO-PEER STREAMING 
 
One issue in peer-to-peer streaming is how to take advantage of nodes with asymmetric 
download/upload speeds. Digital fountain codes, including prime residues, offer an 
interesting solution. Using prime residues, a node can transmit at ½, ¼, or any fraction of 
the input stream speed. This includes rates that are greater than one as well. For instance, 
a stream could be broken up into separate streams that each have ¼ of the stream 
bandwidth. We will use the term “sub-stream” to refer to a stream of residues that has 
lower data bandwidth than the original signal and is generated entirely using a particular 
prime. Of course, there needs to be some means for revealing this prime to the receiving 
node at the time the connection is established. Using distinct primes, a node could 
produce and transmit 6, 7, 8, or more of these sub-streams if it has the upload bandwidth 
to do so. Similarly, it could produce 1 or 2 sub-streams if its upload bandwidth was 
limited. A receiving node can arbitrarily accept sub-streams of any size from any 
transmitting nodes, as long as it receives enough data to satisfy the recoverability 
condition.  
 
One approach to implementing this arrangement would be to assure that each node that is 
uploading data uses a globally unique prime number for each generated sub-stream. If the 
primes used to generate the sub-streams are guaranteed to be unique, then receiving 
nodes can select sub-streams without regard to the specific values of the prime numbers. 
That is, there would be no need to check the primes that generate particular sub-streams 
to make sure they are unique. This argues for larger word widths, w, because there are 
more prime numbers available for large numbers than for small numbers. For unique 
primes, all that is necessary is to assure that WM >  to assure recoverability. 
 
On the other hand, it is not necessary to assure global uniqueness of the primes used for 
generating sub-streams. Even if there are only a limited number of primes used globally, 
such as a table of 256 or 512 primes, it is a simple matter for a receiving node to check 
the primes for distinctness before establishing a connection. In fact, receiving nodes 
could negotiate with transmitting nodes to come to an agreement about which primes to 
be used. The receiving node could, for instance, tell the transmitting node which primes 
to use. This allows the flexibility to choose smaller values of w since only a limited 
number of primes need be used. As noted above, smaller values of w allow encoding and 
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decoding with greater efficiency at the cost of using somewhat higher network 
bandwidth. 
 
If IP multicast is used, then there is some advantage to using globally unique primes, 
since there would be no a priori constraint on which nodes can use a particular sub-
stream. 
 
APPLICATIONS: DATA CAROUSEL 
 
Another use of digital fountain codes is for implementation of the data carousel [4]. In 
this scenario, a piece of metadata is transmitted over and over again. One application 
where this issue arises is transmitting a piece of metadata in a digital video watermark 
[5]. This might be some kind of extra information about the video that carries it, such as 
parental control information. Typical watermarking algorithms imbed a payload of 30-40 
bits per frame, but are recoverable with only a 40% probability. To imbed, say, a 256-bit 
word in a digital video watermark, we need to break the data into separate words. To 
decode, we need to assemble enough good words to reconstruct the original data. The 
fastest way to do this is to use a digital fountain code, such as prime residues. We can use 
a table of, say, 128 different prime numbers. We can then augment the 256-bit word with 
a 32-bit ECC code, then break it up into 12, 32-bit words that consist each of 25 bits of 
residue and 7 bits that identify the specific prime number. The encoder can simply cycle 
repeatedly through all 128 prime numbers. The receiver then needs to collect 12 good 
words that have distinct primes to reassemble the data word. The point of the 32-bit ECC 
code is so that we can detect when the 256-bit data word changes. It might change in the 
middle of the 12 word sequence as we receive it. In this case, we would detect an ECC 
mismatch. We would discard the oldest of the recovered words and go back to collecting 
new payloads as they come in. 
 
Use of a digital fountain code allows us to reconstruct the metadata in far fewer frames 
than would be required if we just transmitted the metadata word a few bits at a time. The 
following table summarizes the difference: 
 

RECOVERY 
RATE 

USING PRIME RESIDUES NAÏVE ENCODING 
95% 99% 95% 99% 

10% 180 211 619 807 
20% 89 103 293 377 
30% 58 67 184 238 
40% 43 49 128 167 
50% 33 38 94 124 

 
Table 1: Waiting time in frames to receive a 256-bit number with a 
32-bit ECC word. The number of frames shown is required to give a 
95% or a 99% confidence of recovering the 12 words necessary to 
reconstruct the data. The naïve encoding refers to just taking the bits 
in sequence with no special encoding. The recovery rate refers to the 
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probability of accurately recovering a 32-bit payload on any given 
frame. 

 
These results were generated using Monte-Carlo simulations. As expected, the recovery 
time is considerably improved through the use of prime residue encoding. 
 
EXAMPLE IMPLEMENTATION: 
 
We implemented a trial system for encoding and decoding 256-bit words as four 65-bit 
streams. This means that we need to use 65-bit prime numbers for encoding. At this size, 
there are lots of prime numbers available for use. They can just be generated randomly at 
each node with high confidence that they will be globally unique. The resulting stream 
was decoded using a 3.2 GHz (single-core) Intel x86 processor. It was clocked at an 
overall decoding rate of 12.8 ns per bit, or about 78 MBits/second throughput. We take as 
an example the data rate of video from a DVD, which is 9 MBits/second. At this data 
rate, prime residue decoding requires about 1.1% of the processor. Encoding, of course, is 
quite a bit faster, since it consists of a single multiple-precision divide for each word to 
be coded. We did not measure the encoding speed precisely. This overall compute load is 
low enough to make it practical for consideration in streaming applications. 
 
COMMENTS: 
 
Previous authors have described the use of prime residues as a forward error correcting 
code [6]. In that case, it is not known which packets are corrupted. They give algorithms 
that are “almost” linear in computing time. In a block erasure code where sequence ID 
numbers are transmitted with the packets, it is known exactly which packets are missing. 
This allows the decoding to proceed in )(nO  time, since all that is necessary is to 
calculate the recovery expression using any K  received packets. The assumption that 
makes the system work is that a packet is either received correctly or it is not received at 
all. Enforcement of this assumption is taken as a given. Prime residue encoding is then 
seen as a simple and efficient implementation of a block erasure code that can be used to 
implement a digital fountain or data carousel. 
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